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1 Abstract

This phenomenological study assesses the impacts
of full lockdown strategies applied in Italy, France,
Spain and United Kingdom, on the slowdown of the
2020 COVID-19 outbreak. Comparing the trajectory
of the epidemic before and after the lockdown, we
find no evidence of any discontinuity in the growth
rate, doubling time, and reproduction number trends.
Extrapolating pre-lockdown growth rate trends, we
provide estimates of the death toll in the absence of
any lockdown policies, and show that these strategies
might not have saved any life in western Europe. We
also show that neighboring countries applying less
restrictive social distancing measures (as opposed to
police-enforced home containment) experience a very
similar time evolution of the epidemic.

2 Introduction

The recent COVID-19 outbreak in Europe has
challenged the governments responsiveness in front
of an unpredictable and unprecedented situation.
Since most countries were unprepared to face such
an unexpected epidemic, lack of testing capacities
yielded most policies to shift towards social distanc-
ing measures rather than modern laboratory-based
quarantine [10]. A broad range of public actions were
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taken in response to the epidemic, from no action at
all (Sweden) to full lockdown (Italy, France, Spain
and United Kingdom), including police-enforced
home containment. Other countries, such as the
Netherlands and Germany, opted for a measured
response, encouraging social distancing without
locking their population down.

While new medical treatments proposed to cure
COVID-19 cases are required to be validated through
controlled double blind studies, the benefits and
risks of social distancing strategies are not subject to
any comparative tests. However, full lock-down mea-
sures, such as those decided in Italy, France, Spain
and United Kingdom have not been experienced in
Western Europe countries for centuries, and their
effects in contemporary population’s mental and
physical health is largely unknown. The COVID-19
epidemic episode was shown to, by itself, affect
mental health, including anxiety syndromes and
depression [21] and the consequences of isolation
could enhance these conditions. In the absence of
any control group, the impacts on western Europe’s
population will not be measurable until months.
Nevertheless, increased mortality due to difficulties
of access to basic health care, increased mental
conditions linked to isolation, as well as social
consequences of economic recession, despite being
unquantifiable so far, is to be expected. Such mea-
sures are thus only appropriate if their impacts on
limiting the epidemic spreading save more lives than



their inherent death toll. Attempting a real-time
assessment of full lockdown policies efficiency thus
seems crucial to help public action decisions in the
forthcoming weeks.

Recent modeling results suggest that China’s full
lockdown policy was successful in containing the
epidemic [9]. In an attempt to predict the efficiency
of similar policies in Western Europe countries (Italy,
France, Spain and United Kingdom), Picchioti el
al. (2020) [16] implemented a SEIR model, testing
different lockdown parameterizations, and suggested
that early public containment measures could be
efficient. However, as acknowledged by the authors,
real-time parameterization of a model for an un-
known disease is a difficult and uncertain task, and
the effects of lockdown may vary from one country
to another. Although modeling studies offer valuable
insights and possible scenarii for forthcoming events,
and might provide a deep understanding of the
epidemic’s dynamics a posteriori, they require vali-
dation, which can only be provided by thorough data
analysis. In that regard, the observational efforts of
Tobias (2020) [20] represent an interesting approach.
The latter recently claimed that the full lockdown
policies in Spain and Italy have had positive results
in slowing the epidemic. However, their methods,
based on fitting linear trends to the logarithm of
the daily new cases and daily death numbers, and
comparing them before, and after the lockdown
policies, might not be appropriate. As will be shown
below, to assess the trajectory of the epidemic, one
should look for trends in the time derivative of the
logarithm of daily numbers, rather than trends in
the logarithm of the daily numbers itself.

Here, we show that the available data exhibit no
evidence for any effects of the full lockdown policies
applied in Italy, Spain, France and United Kingdom
in the time evolution of the COVID-19 epidemic. Us-
ing a phenomenological approach, we compare the
evolution of the epidemic before and after the full
lockdown measures are expected to produce visible
results. Our approach have similarities with Tobias
(2020)’s [20]: it is focused on incident rather than
cumulative data, and it compares pre-lockdown and

post-lockdown trends. However, here, no positive
changes are noticed in the trend of the daily death
growth rate, doubling time, or reproduction number,
weeks after lockdown policies should have impacts.

3 Methods

Although Epidemic outbreaks are complex dynamical
systems, the daily new cases number most generally
follows a similar time evolution: after an exponen-
tial growth, infections slow and eventually decay ex-
ponentially as, whether group immunity is reached,
or seasonal factors or public actions slow the virus
reproduction. This behavior has been observed for
seasonal influenza [14], HIN1 [7] as well as for re-
cent coronavirus epidemics such as SARS [1, 5, 8] or
MERS [3]. It is usually well described by exponen-
tial functions such as the logistic distribution or the
Gauss function. The Gauss function is defined here
for time evolution of new cases as:

(t—Tp)?

c(t)y=e

(1)

where ¢(t) is the daily number of new cases, ¢ is time,
T, is the time of the peak (maximum infection), and 7
is a time scale defining the duration of the epidemic.
In the assumption of a steady relationship between
the number of cases and the number of fatalities (the
fatality rate p is time-independent), the daily death
number d(t) is linked to the daily new cases number
¢(t) through the time-lagged proportionality relation:

d(t) = pe(t - Ty), (2)

where Ty is the average time between infection and
death. It thus follows a similar Gaussian-like law.
However, the latter never is a purely Gaussian func-
tion, and is often skewed or exhibits more complex
patterns [8], so that the definition of Eq (1) is not
exactly correct and needs to be generalized.

It is natural and convenient to express time evolution
of ¢(t) as a power function with a time varying expo-
nent. As for any strictly positive function, c(t) can
be written in the form of a generalized exponential
function:

c(t) = ¢(0)e’W? (3)



where the time varying function «(t) will be referred
to as the growth rate of ¢(t). Expressing time evolu-
tion of the daily new cases number in the form of Eq
(3) can be thought of as a generalization of Richards’s
phenomenological model [18].

If v is a constant, c(t) is a pure exponential. If
~(¢) is a linearly decaying function of the form ~(¢t) =
B+ at, with a < 0, c(t) is a Gauss function, and T},
and 7 can be expressed in terms of the slope and
intercept of ~(t):

r=y/= )
—B
T, = " 9a (5)

In that case, the short time asymptotic limit is close
to a pure exponential growth, since ¢ << T,. It then
slows down as ¢ approaches T},, and starts to decay
as t passes T,. Eq (3) however allows any form of
~(t) and is not restricted to Gaussian or exponential
behaviors. Values of v(¢) can be retrieved from any
time series of the daily new cases number, or equiva-
lently the daily death number :

d(t+6t), . In(d(t + 8t)) — In(d(t))
d(t) /ot = 5t

Y(t) = In( (6)
~(t) can thus be defined as the time derivative of the
natural logarithm of the daily death number. This
method is commonly used in the study of transient
perturbations growth in fluid mechanic’s generalized
stability theory [6, 12]. In this work, we will be
primarily studying the time variations of v, and
search for visible trends in the latter.

Since the time necessary for the number of fatalities
to double (hereafter doubling time) is a commonly
used diagnostic of an epidemic evolution, it is also
computed in this work. The total number of deaths at
time t is the time integral of the daily death number:

D(t):/0 d(s)ds

Since D(t) is also a strictly positive function, it can
be expressed in a similar form as Eq (3):

D(t) = D(0)e" ™

(7)

(8)

and T'(¢) can be retrieved as in Eq (6):
_ In(D(t+6t)) — In(D(t))

I'(t) = 9
) ) 0
The doubling time (7%) is related to I' following:
In(2
) w0

so that we can obtain instantaneous estimates
of T5(t) without waiting for the number of total
fatalities to actually double.

To assess the efficiency of lockdown policies, we
first compute the growth rate ~(t) from the daily
deaths observations and apply linear regression to
estimate its trend before the lockdown should have
any visible effects (t < Tjq+ T4, where T4 is the start
date of the lockdown measures). We then predict
values for each variable of interest after the lockdown
should have visible effects by extrapolating the linear
evolution of «(t) after this date. This allows us to
compare observed values of growth rate, daily deaths,
doubling time, and total fatalities number, with
the values expected from the pre-lockdown trend
(what would have happened if nothing had changed).

To assess the evolution of the epidemic with a more
classical approach, we also compute an instantaneous
reproduction number as well as an estimate of the re-
production number, based on the daily deaths data
and Eq (2), which links the daily deaths number, the
fatality rate, and the daily new cases number. The
reproduction number is the number of secondary in-
fections provoked by a typical case [1]. In practice,
the reproduction number shows large variability de-
pending on a number of factors such as the age or
the region [15]. However, a mean estimate is useful
to assess the epidemic stage. Here, we approximate
the instantaneous reproduction number R; as the ra-
tio of the number of new cases and the total number
of contagious cases at time ¢:

c(t
Rift) = - 7
ft—TC(C(S) - d(S))dS
where T, is the time during which an infected person
remains contagious, and s is an integration variable.

(11)



It is important to note that we make the assump-
tions that new cases start to be contagious right af-
ter infection (zero generation time), and that all cases
within the contagion period T, are equally likely to
produce secondary infections. While our simplifying
hypothesis of zero generation time might yield to an
underestimate of the reproduction number, it does
not affect its general trend, which is what this study
is focused on. The reproduction number R, which is
the number of persons that will be infected by each
contagious person during the time T, is approximated
as:

(12)

The epidemic is in a growing phase if R > 1 and
decays otherwise.

4 Data

Because of the important proportion of asymp-
tomatic cases of COVID-19 [2, 17, 13] and of
the testing policies of most countries, which are
restrained to severe and potentially deadly cases, the
daily number of new confirmed cases is not a reliable
variable to assess the evolution of the epidemic. We
thus only used the daily deaths number to estimate
the growth rates and their trends. The daily number
of new cases is inferred from the daily death number
and a fixed fatality rate using Eq (2).

The data used in this study are produced by the
European Center for Disease Prevention and Control
(ECDC). Because of a lack of daily deaths reports
in nursing homes in France until 02 April 2020,
that were suddenly corrected in the dataset, we
only use hospital deaths data for this country, for
consistency of the time series. The daily and total
deaths numbers in France are thus greatly underes-
timated in our study, but one should keep in mind
that we are focused on time evolution and trends
rather than absolute values, so that time-consistency
is the single most important requirement for the data.

To compute the growth rate of the daily deaths
number v(¢) and of the total fatalities number I'(t)
as well as the doubling time T»(t), the daily deaths
data are first low-pass filtered using a 3-days running
mean on the logarithm In(d(t)).

The values used here for the time between infec-
tion and death T, ranges between 14 and 20 days,
with a median reference value of 17 days. It cor-
responds to the averaged value of hospitalization to
death reported by Russell et al. (2020) [19] (13 days)
plus a period of 1 to 7 days between infection and
hospitalization. Two different values of the time dur-
ing which an infected person remains contagious (7)
were tested to infer the reproduction number: 14, and
21 days. The former is the duration of the quaran-
tine applied to any confirmed cases in most countries,
and the latter is a longer estimate used for compar-
ison since the 14 days value is uncertain [19]. For
computing estimates of the daily case number, we
used a fatality rate of 1.7 %, which is a median value
between Russell et al. (2020)’s [19] estimates of the
Infection Fatality Ratio and Case Fatality Ratio on-
board the Diamond Princess passenger ship. The lat-
ter also closely matches South Korea’s fatality rate
(1.6%) [4], which is one of the most reliable estimate
so far, given the wide-range testing policy and the
advanced stage of the epidemic in this country.

5 Results

Time evolution of the reproduction numbers R;
and R is shown in figure 1 for France, Italy, Spain,
and United Kingdom. 4 different estimates are
proposed in each figure: the estimates defined in
Eq (12), computed for values of contagion duration
of T, = 14 and 21 days, as well as values of the
instantaneous reproduction number multiplied by
the contagion duration (R;T:). For all four variables,
time evolution exhibits a similar pattern: a steady
decreasing trend from 4 to 9 secondary infections
per case in the beginning of the epidemic to less
than unity 15 to 30 days before the reference date
(18 April). In all four countries, no discontinuity in
the general decaying trend is observed around the
full lockdown’s start date. Even though this date



coincides approximately with the 1-crossing of R
in France, Italy, and Spain, the latter is only the
follow-up of a longer term decay. Note that, despite
the simplifying assumptions used here, our estimates
are of the same order of magnitude as Liu et al.
(2020)[11)’s interval [1.4-6.49] for the outbreak in
Wuhan.

Analysis of the evolution of the growth rate ~(¢)
confirms this long-term trend in the trajectory of
the epidemic before any full lockdown policies were
effective (figure 2). A general decaying trend of ~(t)
is evident from the beginning of the epidemic in all
4 countries, although some variability exists around
the linear trend, with a nearly periodic oscillation
of 5 to 8 days. Linear regression satisfyingly models
the time evolution of v, with coefficients of determi-
nation r? (fraction of the variance explained by the
model) of 0.67, 0.74, 0.87, and 0.51 for France, Italy,
Spain, and United Kingdom, respectively. Linearity
of ~(t) suggests that time evolution of the epidemic
is consistent with a Gauss function. Comparing
the linear decaying trend before, and after the time
by which full lockdown policies should have visible
impacts, we find that the slope of v(t) decreases in
France, Italy, and Spain after the full lockdown, and
remains constant in United Kingdom. The decay of
the epidemic has thus slowed since the lockdown is
effective. Comparison of the general decay trends
in France, Italy, Spain and United Kingdom with
that of the Netherlands provides a further insight
on the effects of full lockdown: Netherlands decay
trend is slightly slower than France and Spain
before lockdown, and is nearly similar to Italy and
United Kingdom’s. In all four countries, the decay
trend after the effective lockdown is slower than
Netherlands trend.

Since a raw, visual analysis of the effects of full
lockdown on the doubling time could mislead to
the impression that the doubling time increase is
accelerated after the lockdown is effective, we should
carefully inspect the results of figure 3. We com-
puted an estimate of the doubling time, assuming
the pre-lockdown trend in ~(t) remains constant
after the lockdown is effective (we assume that ~(¢)

keeps on linearly decaying after lockdown with the
same slope as before lockdown). Comparing these
estimates (dashed green line) with the observed
values (blue squares) shows that the initial pre-
lockdown trend yields a steeper rise in the doubling
time than what is observed after lockdown policies
should have visible impacts. The visual impression
of an accelerating Ts growth in the data is thus not
to be attributed to the lockdown effects, but rather
to the inherent growth of the T function when I'(¢)
reaches small values. Figure 3 thus also underlines
the lack of evidence of any effects of the full lockdown.

Similarly to the doubling time, we estimated
the evolution of the daily deaths number in the
hypothesis of a continuation of the pre-lockdown
trend in ~y(¢) after the lockdown policies should have
visible impacts. Our results show that, even though
the dates of the daily deaths peaks in France, Italy,
and Spain roughly correspond to the dates where
lockdown effects should be visible, the peak dates
expected from the pre-lockdown trends are actually
the same. Moreover, daily deaths observations after
this date show a slower decay than what would be
expected from the pre-lockdown tendencies. Forecast
of the future evolution of the daily deaths number
using the same method with the linear trend of the
full time series and the latest observations is also
shown as the blue line (for indicative purpose only).

Time evolution of the total death toll, both
observed, and predicted from pre-lockdown trends is
shown in figure 5. One would expect total dead num-
bers to rapidly saturate at a value close from that
corresponding to the crossing of the curve and the
date of expected visible lockdown effects. However,
the total dead number kept on growing after this
date, closely following the values expected from pre-
lockdown trends, and even reaching values beyond
the death toll expected from the latter. Again, the
forecast dead number obtained from extrapolating
~(t)’s linear trend in the future is presented for
indicative purpose. It is however interesting to
notice the consistency in the order of magnitude of
the final total deaths forecast at a 15 to 25 days in-
terval (at the time of the lock-down and on 18 April.).



While comparing pre and post lockdown time
evolutions of the epidemic brings a useful insight
on the impacts of home containment, it is also
of interest to compare this evolution with that of
countries applying different policies. Figure 6 shows
the evolution of the daily deaths growth rates +(¢),
their linear trends, the reproduction numbers, and
the doubling times for 10 countries. We selected
countries that had over 1000 fatalities by April 15
2020, and chose to exclude Chinese data, given the
growing doubts on the official data accuracy. The
time reference was chosen to be the day by which
the total death toll reached 100 in each country.
Evolution of ~(¢) shows a similar general decay
trend in all countries, except Sweden, which shows
large fluctuations, along with a flatter evolution
of the linear trend. Note that the coefficient of
determination for Sweden is way too low for this
trend to be trusted (R? = 0.02). It is interesting
to note that, while the linear trends of the growth
rates have similar slopes in nearly all countries, they
show a wide range of intercepts (value of v at t
= 0), showing that although the slowdown of the
epidemic follows a similar trajectory, each country
started at very different levels of growth rates. This
general decay trend is accompanied by a regular
decay in the reproduction number in all countries,
with similar slopes and, again, a wide range of
initial reproduction numbers. As expected from a
decreasing growth rate and reproduction number,
the doubling time is increasing in all countries from
the beginning of the time series. Figure 6 thus shows
that time evolution of the epidemic is homogeneous
in Western Europe, and that the main differences
reside in the initial conditions at the beginning of
the epidemic. In particular, the figure shows that
countries with social distancing policies, but no home
containment, such as the Netherlands and Germany
experience a very similar decay of the epidemic in
terms of growth rate, reproduction number, and
doubling time, to countries with police-enforced
home containment. On the other hand, results for
Sweden suggest that taking no action at all may
yield a slower decay of the epidemic. But again,
the coefficient of determination for Sweden is still

two low to allow definitive conclusions about their
strategy.

6 Summary and discussion

This observational study, using a generalized phe-
nomenological method based on official daily deaths
records only, shows that full lockdown policies of
France, Italy, Spain and United Kingdom haven’t
had any effects in the evolution of the COVID-19
epidemic. Our results show a general decay trend in
the growth rates and reproduction numbers two to
three weeks before the full lockdown policies would
be expected to have visible effects. Comparison
of pre and post lockdown observations reveals a
counter-intuitive slowdown in the decay of the
epidemic after lockdown. Estimates of daily and
total deaths numbers using pre-lockdown trends
suggest that no lives were saved by this strategy, in
comparison with pre-lockdown, less restrictive, social
distancing policies. Comparison of the epidemic’s
evolution between the fully locked down countries
and neighboring countries applying social distancing
measures only, confirms the absence of any effects
of home containment. Evolution of the epidemic in
Sweden however indicates that, in the absence of any
social distancing measures, the epidemic’s decay may
be slower and subject to more fluctuations, though
the low coefficient of determination for Sweden
forbids us any definitive conclusion. This work thus
suggests that social distancing measures, such as
those applied in the Netherlands and Germany, or in
Italy, France, Spain, and United Kingdom before the
full lock-down strategies, have approximately the
same effects as police-enforced home containment
policies.

So far, the reasons for the relatively regular
decay of the epidemic remain largely unknown.
While social distancing efforts may contribute to it,
environmental conditions could as well have played
a role (possible seasonality of the virus). The group
immunity hypothesis, though being unlikely if the
reference fatality rates are correct, deserves a short



discussion: computing the number of daily new cases
from the number of daily deaths following Eq (2),
and using a fatality rate of 1.7%, we forecast a ratio
of infected population at the end of the epidemic of
1.3%, 2.9%, 2.7%, and 2.1% in France, Italy, Spain,
and United Kingdom, respectively. The latter is
obviously far from being able to yield any group
immunity. Under the rough assumption that 50
to 70% of the population needs to be infected to
ensure group immunity, it is possible to compute
an hypothetical fatality rate using Eq (2). We
find that, if group immunity was responsible for
the decay of the epidemic, the fatality rates in the
50% hypothesis would be of about 0.05%, 0.1%,
0.1%, and 0.07% in France, Italy, Spain, and United
Kingdom, respectively, and of 0.03%, 0.07%, 0.07%,
and 0.05% for the 70% hypothesis.  Obviously,
this is only a gedanken experiment, which is far
beyond the scope of this paper, and only serological
tests and further data analysis, once the epidemic
is completely instinct, will allow to discriminate
between the possible reasons for its decay.

As a concluding remark, it should be pointed out
that, since the full lockdown strategies are shown
to have no impact on the epidemic’s slowdown, one
should consider their potentially high inherent death
toll as a net loss of human lives.
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Figure 1: Time evolution of the reproduction number for France, Italy, Spain, and Great Britain. The blue square
represent the daily reproduction number multiplied by an estimate of the time during which a case is contagious
(RiT:). The green dots represent the reproduction number (R) computed as a time integral of the daily reproduction
number (R;) and thus takes into account time variations of the latter. The dashed vertical orange line is the start
date of the lockdown policies. Two values of T. were used for each variable: 14 and 21 days.
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Figure 2: Time evolution of the growth rate of the daily deaths number ((¢)) for France, Italy, Spain, and Great
Britain. The vertical orange dashed line shows the start date of the full lockdown policies. The orange shaded area
represents the time at which the lockdown should show some effects in the epidemic spreading (14 to 20 days), and
the thick line is the reference date (17 days). The blue squares represent the observations, and the thick gray line
represents the linear trend of the observations. The dashed green and red lines represent the linear trends before and
after the lockdown should affect the observations.
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Figure 3: Same as figure 2 for the doubling time. The thick dotted green line represents the expected evolution if
the pre-lockdown linear trend in «(¢) is extrapolated beyond the day lockdown policies are expected to be effective.

(What would happen without any lockdown, assuming that the growth rate’s evolution remains the same)
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Figure 4: Same as figure 3 for the daily deaths number. The green dotted lines represents the expected evolution
based on the pre-lockdown trend of (), while the plain blue line represents the expected future evolution based on
the full time series trend of «(¢). The light blue shading represents an error margin computed by doubling or dividing

by two the slope of the linear fit to ~(¢)
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Figure 5: Same as figure 4 for the total fatalities number.
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Figure 6: Comparison of the time evolution of the epidemic for 10 countries.
the day each country reaches a total dead number of 100. The top left hand side panel shows the time evolution of
~(t); the top right hand side panel shows the linear fits to (¢); the bottom left hand side panel shows values of the
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reproduction number R(t); the bottom right-hand side panel shows the instantaneous doubling time.
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